报 告 人:惠昌常 教授
报告题目:On Tachikawa’s second conjecture
报告时间:2024年03月08日(周五)下午14:00-15:00
报告地点:静远楼1508学术报告厅
主办单位:数学与统计学院、数学研究院、科学技术研究院
报告人简介:
惠昌常,首都师范大学数学科学学院特聘教授,博士生导师,教育部国家高层次人才获得者。主要从事代数表示论的研究,在J. Rein Ang. Math., Adv. Math., Proc London Math. Soc., Math. Ann., Comm. Math. Phys,Trans Amer Math. Soc., J. Algebra, J. Pure Appl. Algebra等国际著名期刊发表论文90余篇。现为J. Algebra和Archiv der Mathematik的编委,曾获教育部科技进步二等奖、德国“年轻杰出学者洪堡奖”。
报告摘要:
In the representation theory and homological algebra of finite-dimensional algebras, one of the most prominent conjectures is the long-standing and not yet solved Nakayama conjecture, saying that a finite-dimensional algebra over a field with infinite dominant dimension should be selfinjective. This conjecture is equivalent to the combination of two conjectures by Tachikawa, where the second conjecture states that an orthogonal module over a self-injective algebra should be projective. In this talk we consider Tachikawa’s second conjecture for symmetric algebras. We give a new formulation of this conjecture for symmetric algebras in terms of derived recollements of algebras. The talk presents parts of a joint work with H. X. Chen and M. Fang.